The high-rise building is obviously made of concrete, so why does the whole building burn after a fire? foaming agent for foam concrete

First, concrete absorbs and transfers heat a lot more quickly than dissipates warmth quickly. When a fire happens, it has the impact of sustaining combustion, which amounts including gas to the fire. The more it melts, the larger it gets. Concrete might appear gorgeous and strong, however in fact, maybe much better than adobe homes. There is no thermal insulation and warm dissipation effect like adobe bricks.

(burning concrete building)

On the various other hand, I simply damaged the surface. If the steel-concrete structure of a high-rise building is white, there will not be a lot of smoke and fire if it sheds. It is mostly made of interior design products, primarily organic materials, oil, or plastic materials., as soon as ignited, the fire will certainly become fierce and create a large amount of black smoke.

Second, fires in high-rise buildings can melt concrete and steel bars. Oxygen supports burning. Furthermore, the temperature level generated by the auxiliary burning of various other combustible things in the building is really high. Nevertheless, it is not a fire in a country home. In the 911 event, one building was damaged by an aircraft. After the collision, it did not collapse at the time. Later on, the fire brought on by the impact burned and thawed the main body of reinforced concrete and ultimately collapsed.

(burning concrete building)

On the various other hand, interior design products, home devices and furniture are primarily flammable. If one floor burns for a long period of time, the temperature level will certainly permeate the flooring and stir up the top and lower floors. The floor is high and windy, with excellent ventilation and high oxygen content. The high-temperature warmth circulation will develop a smog. Power, the fire should be really strong.

Third, the foam plastic utilized for outside wall surface insulation is the wrongdoer. Foam plastics are frequently made use of in Europe and the United States, so a group of specialists introduced this modern technology. But they undoubtedly need to have considered that a lot of foreign buildings are 2- or three-story property buildings, and fire protection requirements are reduced. When a fire bursts out in the building, it will certainly trigger severe effects. 2- and three-story structures are not mainstream in China, and even in backwoods, there are really few of them. To present innovation, we need to take into consideration the current scenario of residential building. Otherwise, we will certainly be finding out in Handan.

(burning concrete building)

Fourth, the focus is out room furnishings and wood items but on the reality that paint is made use of in all developing decorations, such as wall surface paint. Also premium wall surface coverings are fabrics. Repaint or textiles are inherently flammable objects. On top of that, several various other decor products have different shades. The shades are additionally made from numerous kinds of paint. Once they experience heats, they will burn even if there is no open fire.

On the various other hand, I have seen lots of people saying that the top quality of thermal insulation materials is unsatisfactory. In fact, it is not simply moisture-retaining products. The country likewise has corresponding flame retardant requirements for wood used for interior decoration and furnishings of high-rise buildings, yet furnishings factories and building products manufacturing facilities will certainly avoid this. Common customers do not comprehend the problem, so primarily, the wood materials on the market are non-fire retardant materials, whether they are utilized in skyscrapers or not.

(burning concrete building)

Fifth, recommendations from firemens to prevent troubles before they occur: Each floor needs to be geared up with a fire hydrant. If the area is large, you can likewise gear up numerous. If a fire happens, promptly manage the fire to prevent the fire from spreading to other floors. If it is a property structure, each house ought to be outfitted with a little fire hydrant. Once a fire happens in your home, the fire can be rapidly controlled within your own home. On top of that, furniture, curtain design, and so on, need to be constructed from non-combustible materials. The degree of fire protection automation in skyscrapers is reasonably high. The person in charge of fire security in high-rise buildings is in area and responsible, and assessments and drills are in place. Terminates can be stopped by controlling combustibles, combustion-supporting products and fire sources.

The manufacturing process of concrete is a vital aspect affecting its fire resistance. Among them, the control of the water-cement proportion is vital. Too high or also reduced a water-cement ratio might have unfavorable impacts on the fire resistance of concrete. In addition, the top quality and form of the stones in concrete will additionally have an influence on its fire resistance. Using hard and regular-shaped stones can improve the fire resistance of concrete.

Pertaining to the discovery of fire resistance, there are lots of frequently made use of techniques, such as high-temperature examination approach, fire examination approach, thermogravimetric evaluation technique, and infrared spectroscopy technique. These methods evaluate the fire resistance of concrete by simulating high-temperature environments or straight observing the performance modifications of concrete at heats.

Concrete Additive Vendor

Cabr-concrete is a supplier of foaming agents and other concrete additives, which is concrete and relative products with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high quality raw materials of foaming agent for foam concrete, please feel free to contact us and send an inquiry. (

The lifespan of cement is only 50 years. Will the house collapse when the time limit is up? water reducing admixtures

What concerning the 3 Gorges Dam?

From ancient times to the here and now, cement has actually played an essential duty in the human building of residences and significant tasks. This synthetic mixture made from all-natural products such as sedimentary rock and clay is widely made use of due to its excellent mechanical properties. However, as time passed, a disturbing rumor started to circulate amongst the people. The service life of concrete is just half a century, whereby time the building will be collapsing or even collapse. The case triggered public panic and elevated doubts regarding the future of first-rate jobs such as the 3 Gorges Dam. The Three Gorges Dam, one of the biggest hydropower terminals on the planet, also utilizes cement for watering. It was built using stringent engineering standards and advanced technology.

Concrete's life expectancy is only half a century. Will your home be in threat already? What concerning the 3 Gorges Dam built with cement?

(concrete construction)

1. The trick of cement stamina

Every person need to have listened to the saying, "Concrete has a life-span of 50 years". Nevertheless, this declaration is not completely precise, and the life span of cement is not figured out below. Real life expectancy of a building is additionally affected by lots of factors. The supposed 50-year life of cement originates from the reality that the chemical bonding force created during the solidification process of cement is time-limited.

When concrete and concrete are mixed, the calcium and silicic acid molecules in the cement dissolve in the water, developing a coarse calcium silicate crystal framework. This structure remains to link to create chemical bonds, locking in wetness and causing the concrete to gradually set and solidify. Ultimately, its strength will also surpass that of some steel products.

But this enhancing process is not timeless. Usually, after 50 years or two, these chemical bonds will gradually age and shed their adhesive force, resulting in a decline in cement stamina. But that doesn't imply that structures will certainly fall down quickly in 50 years. Actually, the primary elements that determine a structure's life span depend on structural design, building high quality, material option, and post-maintenance.

For instance, the well-known Sydney Opera House was constructed in the 1960s. Nevertheless, due to correct maintenance and exceptional style and construction, it is still standing today. On the various other hand, if the style is practical, the construction is shallow, and the monitoring is smooth, it will certainly be challenging for the building to be utilized for a very long time, also if the chemical bonding force is still there. It can be seen that concrete stamina is just one-factor impacting life and is never definitive.

(concrete construction)

The present style service life of urban real estate in China is usually half a century. However this is not figured out by concrete life. Rather, it is based on numerous considerations such as calamity avoidance and reduction, source recycling, etc. After 50 years doesn't indicate your home needs to be destroyed. As long as it goes through expert assessment, reinforcement and repair service to make sure that it satisfies the relevant load-bearing and seismic demands, it can continue to be utilized. Also the new life span will surpass the initial style life.

Actually, the service life of modern excellent structures frequently surpasses 50 years. For example, the Realm State Building in New york city, built in the 1930s, was carefully developed, utilizing premium materials and clinically constructed. The Realm State Building is still standing and has been in use for more than 80 years. The crucial aspects that figure out the life of a building include architectural layout, construction modern technology, building product option, daily maintenance, etc.

Excellent designers will fully think about and forecast the life span of the structure at the beginning of the plan and utilize top quality products. Using advanced anti-seismic, anti-seepage, energy-saving and other innovations can expand its service life to 100 years or even much longer. Although cement has a specific chemical bonding time frame, it does not mean that the structure is "junked." As long as it is meticulously developed and built from the start of construction and attention is paid to subsequent maintenance and repairs. The majority of modern structures can continue to be made use of securely for many years after half a century and continue to serve the city.

(concrete construction)

2. Building and special considerations of the Three Gorges Dam of the Century Job

For large-scale water conservancy projects, the discussion regarding the life span of concrete is much more worthy of factor to consider. Take the Three Gorges Dam, the world's most impressive hydropower terminal. It carries multiple jobs such as flood control, power generation, and shipping and is a vital nationwide critical project.

Chinese designers placed in plenty of initiatives during the layout and building and construction of the Three Gorges Dam. Allow the dam have an ultra-long style life of greater than 100 years. As the world's most enthusiastic hydropower task, the building and construction process of the Three Gorges Dam has actually attracted much attention and has actually gathered the initiatives and knowledge of numerous Chinese individuals.

From the preliminary concept put forward by Sunlight Yat-sen in the 1920s to the energetic promo by the older generation of revolutionaries, such as Chairman Mao and Premier Zhou, after the beginning of New China. After decades of repeated demos and strenuous prep work, the Three Gorges Job finally started construction in the 1990s. As a large water conservancy task with several features. The Three Gorges Dam shoulders essential responsibilities such as flood control, power generation, and shipping and is known as the century-old dream of the Chinese nation. Throughout the style and construction procedure, Chinese engineers stuck to the policy of "active prep work and complete dependability" and spent many initiatives.

(concrete construction)

On May 1, 1998, the short-term ship lock of the 3 Gorges Project, the first detailed job constructed in the Yangtze River 3 Gorges Job, was formally open up to navigating, noting the beginning of this world design titan. In the adhering to years, the Three Gorges Job overcame globe troubles one after one more and remained to establish construction records. In 1999, the 3 Gorges Task set a globe record for month-to-month and annual concrete pouring quantities. In 2003, the third phase of the RCC cofferdam job once more damaged five globe records.

The year 2003 was of great relevance to the 3 Gorges Task. In this year, the job achieved the set objectives of the second stage of power generation, navigation, and water storage space. This year, the Three Gorges Dam successively experienced key links such as the 2nd closure of the Yangtze River, the acceptance of the 2nd phase of the dam, and the first water impoundment. By the end of that year, the 3 Gorges Job had finished the majority of the earthwork excavation, backfilling, and concrete putting, and the entire left financial institution dam reached a dam crest elevation of 185 meters. At the exact same time, the 3 Gorges resettlement work is progressing gradually, and the storage tank location has actually taken on an entirely new look.

In 2006, the last concrete of the best bank dam was poured in place, and the entire Three Gorges Dam was topped, ten months in advance of schedule. In 2008, the 3 Gorges began its first experimental water storage space. In August 2009, the last approval check of the third phase job was successfully passed, marking that the overall job was essentially finished according to the preliminary design.

(concrete construction)

The excellent Three Gorges Project not just established numerous globe records in engineering innovation but also established a brand-new engineering construction administration mechanism - the "Three Gorges Version." Efficiently managed the job top quality, progress and price, significantly boosting the monitoring degree. For that reason, the 3 Gorges Dam is not built solely with concrete but with concrete and steel as the primary materials. With scientific and strenuous estimations, advanced building modern technology and product option, and rigorous quality assurance, the 3 Gorges Dam has been made certain to have an ultra-long layout life of 100 years.

At the same time, the 3 Gorges Dam is likewise outfitted with a lot of innovative surveillance devices to perform 24-hour vibrant monitoring of the dam body. She has formulated a complete operation and upkeep strategy. It can be claimed that the Three Gorges Dam has done sufficient homework throughout the building and construction phase to eliminate numerous potential risks as much as feasible and lay a solid structure for its future secure operation. Nonetheless, we can not neglect some unclear threats hidden in nature, such as quakes, floods, and various other dreadful weather condition.

Consequently, during the subsequent operation period of the Three Gorges Dam, an expert group is still required to continually keep track of different technical signs and create emergency situation strategies in a prompt way to avoid issues prior to they happen. Its life expectancy and security are fully guaranteed as long as we preserve admiration of nature and continue maintaining it. This water conservancy titan will undoubtedly be able to serve future generations for a century and even longer.

3. Ecological aspects that can not be ignored are normally the biggest test

You must understand that the 3 Gorges Dam is not just created of concrete. Its primary material is reinforced concrete. With scientific and rigorous estimations, progressed construction technology and optimized product ratio. From the get go of its design, the Three Gorges Dam had a higher safety and security book element than comparable projects.

At the exact same time, the Three Gorges is additionally furnished with a great deal of innovative surveillance devices. Execute 24-hour dynamic tracking of the dam body. A total procedure and maintenance strategy has actually been developed to protect its long-lasting risk-free operation from lots of elements. Although the 3 Gorges Dam was carefully built, we should recognize the power of nature.

(concrete construction)

Although strengthened concrete is hard, a certain degree of chemical weathering and physical disintegration will certainly still take place if it is soaked in water for a very long time. As well as natural calamities such as earthquakes and floodings, which may bring unforeseeable impacts to this massive task. For that reason, for a large-scale project like the Three Gorges, it is necessary to perform different assessments and avoidances during the construction phase.

But in the succeeding procedure and maintenance process. It is even more necessary to have a professional group to continually check various safety and security indications and develop emergency strategies in a timely fashion to prevent issues prior to they occur. At the same time, we have to also connect excellent importance to the prospective threats that environment adjustment and environmental issues might bring and effectively reinforce the security of this century job.

Nevertheless, the Three Gorges Dam is not only related to the nationwide economic situation and people's resources such as flooding control, power generation, and shipping, yet it is also a crucial milestone in the excellent renewal of the Chinese nation. We need to not enable any blunders to harm this dam, which has the effort of numerous builders. Only by paying full focus to different possible threat elements and taking timely and reliable action steps. Only then can the 3 Gorges Dam genuinely hold up against the long-lasting examination of nature and remain to serve the nation and individuals.


Cabr-concrete is a supplier of foaming agents and other concrete additives, which is concrete and relative products with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high quality water reducing admixtures, please feel free to contact us and send an inquiry. (

Application of foam concrete and animal protein foaming agent styrofoam concrete blocks

Applications of foam concrete

As a result of its excellent features, foam concrete is widely utilized in energy-saving wall materials and has actually also been made use of in other elements. At present, the main applications of foam concrete in my country are cast-in-place foam concrete insulation layers for roof coverings, foam concrete face obstructs, foam concrete, light-weight wall surface panels, and foam concrete compensation structures. Nevertheless, making complete use of the good features of foam concrete can constantly expand its application locations in building jobs, quicken job progress, and improve task quality, as follows:

1. It will replace foam plastic and come to be the biggest thermal insulation material in structure insulation.

Foam concrete is cheap and has readily available raw materials. It can be swiftly cast in place and made right into various items. At the same time, it has fire resistance, audio insulation, quake resistance, and weather resistance. It is the best option to change foam plastics. Suitable products.

2. Foam concrete cast-in-place wall surface

The main part of building insulation is the outside wall surface, and the almost all of building noise insulation is the interior wall. Foam concrete can be made use of for cast-in-place exterior wall surfaces to accomplish self-insulation and self-absorption. It has benefits in both interior and exterior wall surface applications.

(foaming concrete)

3. Foam concrete exterior wall surface insulation board

Foam concrete exterior wall surface insulation board refers to an insulation board fixed on the outside wall by pasting or dry-hanging innovation. Since this sort of insulation board has actually been efficiently used in Sichuan, Gansu, Shanghai, Zhejiang, and other places, it is ready to change the foamed polystyrene board for external wall insulation slim gluing system or external wall interior insulation thin plastering system.

4. Foam concrete outside wall self-insulating wall panels

This sort of wall panel consists of foam concrete composite wall panels with a dealing with layer or protective layer on one side and foam concrete sandwich wall panels with an encountering layer or protective layer on both sides. This kind of wall panel can understand self-insulation of the exterior wall. It does not need extra insulation treatment after installment and has excellent fire protection, resilience, and sound insulation properties.

5. Foam concrete integrated housing

Integrated housing is a worldwide development trend, and foam concrete self-insulating integrated real estate is a growth hotspot. Nowadays, several domestic business are concentrating on establishing this sort of self-insulated premade residences.


6. Foam concrete blocks, ceramsite blocks, and autoclaved blocks

Foam cinder block have constantly been the very first crucial item that all events in China like. At present, domestic business have transformed to the r & d of ceramsite foam concrete blocks and autoclaved foam concrete obstructs. These two kinds of building blocks are the direction of growth. A lot of international business make use of autoclaving. The former Soviet Union made use of the all-natural treating process in the 1930s. As a result of reduced toughness, poor frost resistance, and large drying out shrinking, it altered to the autoclaving process in the 1940s. Ceramsite foam cinder block are an advancement in our country with innovative technology and ought to be intensely established.

There are more than 20 functions of foam concrete that have been discovered up until now, and a great deal of its applications are still in civil applications. Among them, the most appealing one in the future will certainly be its use in building noise absorption and insulation. The author predicts that it will certainly end up being the new sound-absorbing product with the most development possibility. Furthermore, it has wide application potential customers in the areas of fireproof insulation, purification, impermeability and waterproofing, and light-weight attractive materials. As the numerous features of foam concrete are uncovered, its application as a practical product will certainly be extremely distinctive.

The application of pet healthy protein frothing agents in foam concrete

In the prep work process of foam concrete, an animal protein foaming representative is mixed with water and cationic surfactant and frothed via a frothing representative maker or high-speed mixer. These foams are after that injected right into a cement slurry and stirred to prepare a foamed cement slurry. The advantage of this preparation technique is that the cast-in-place concrete it produces is not just light-weight, high-strength, and fireproof but likewise does not need autoclaved healing and can be developed by casting in place, which has substantial energy-saving results.

The application of pet protein foaming representatives plays a vital function in boosting the performance of foam concrete. Initially, it aids raise the quantity of concrete and lower its thickness, thereby accomplishing a light-weight impact. Second of all, using foaming representatives can enhance the thermal insulation performance of concrete and improve the energy efficiency of structures. Additionally, animal protein frothing agents can likewise improve the stamina and durability of concrete and prolong the service life of structures.

(animal protein foaming agent)

Nevertheless, the application of animal protein frothing representatives likewise calls for interest to some concerns. For instance, various sorts of animal healthy protein frothing representatives might have different effects on the efficiency of concrete, so it is essential to pick the proper frothing agent according to the specific application scenario. Additionally, the amount of foaming agent additionally requires to be strictly managed. Excessive or too little might affect the quality and efficiency of the concrete.


TRUNNANO is a vendor of pet prorein foaming representative with over 12 years experience in nano-building energy preservation and nanotechnology growth. It accepts repayment via Charge card, T/T, West Union and Paypal. Trunnano will ship the products to clients overseas via FedEx, DHL, by air, or by sea. If you are trying to find top quality spherical silica powder, please feel free to call us and send a questions.



TRUNNANO is a supplier of styrofoam concrete blocks with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high-quality spherical silica powder, please feel free to contact us and send an inquiry.

Recycled and alternative materials for concrete production

Sustainability is an evolving issue, especially in the concrete industry. Traditional concrete made from Portland cement emits large amounts of carbon dioxide, wreaking havoc on the environment. Additionally, the mining of concrete materials such as lime can cause significant harm to waterways and communities.

(Lightweight Concrete Additives)

Researchers and industry professionals have looked into eco-friendly alternatives for concrete production to address these issues. This article discusses the environmental disadvantages of traditional materials and sustainable alternatives that can be used to create new green concrete.

(Lightweight Concrete Additives)

Sustainable concrete mix

A recent article published in the Journal of Sustainable Building Materials and Technology provides a detailed analysis of sustainable methods for producing concrete through alternative mix design.

(Lightweight Concrete Additives)

According to the article, the two options studied are volcanic ash concrete and powder glass volcanic concrete. It is a byproduct of coal combustion and one of the concrete formulations' most commonly used additives. It can reduce the amount of Portland cement used, making concrete stronger and more environmentally friendly.

(Lightweight Concrete Additives)

Natural volcanic ash, such as volcanic ash, has enormous potential as a substitute for fly ash. The harm of harvesting this material to the environment is far less than extracting lime to produce Portland cement.

Implementation of nanotechnology

Nanofillers have been recommended for the sustainable development of concrete. The optimal dosage of nano CaCO3 additive is determined to be 2%. Compared with traditional mortar, adding these additives to cement mortar can produce excellent compression and bending durability. The microstructure study of this mortar reveals the existence of nanostructures in calcite sediment. The presence of nanofillers can compact cement mortar frames, thereby enhancing the physical properties of composite materials. Lightweight concrete additives are substances added to concrete mixtures to reduce weight and enhance certain physical properties. They are commonly used in the construction industry to manufacture lightweight concrete with a density lower than ordinary concrete.

Application fields of lightweight concrete additives

In construction, lightweight concrete additives can manufacture concrete with lower density、better insulation performance. Lightweight concrete is commonly used in walls, roofs, floors, and other parts of buildings, especially suitable for high-rise buildings, large-span structures, and other buildings that need to reduce the structure's weight.

In civil engineering, lightweight concrete additives are mainly used to construct bridges, roads, tunnels, and other infrastructure. Lightweight concrete can improve the seismic performance of structures, reduce temperature stress, and enhance the safety and stability of infrastructure.

Ship and Ocean Engineering: In ship and ocean engineering, lightweight concrete additives are mainly used to manufacture structural components such as ship hulls and decks. Lightweight concrete has good corrosion resistance and high strength, which can improve the durability and safety of ships and marine engineering structures.

Nuclear Industry: In the nuclear industry, lightweight concrete additives are mainly used to manufacture shielding layers and safety shells for nuclear reactors.

Energy saving and environmental protection: Lightweight concrete additives can also be used in environmental protection to save energy. Due to its excellent insulation performance and small thermal conductivity, lightweight concrete can be used for energy-saving renovation and green building construction.


TRUNNANO( is a supplier of lightweight concrete additives in Concrete, which is concrete and relative products with over 12 years of experience in nano-building energy conservation and nanotechnology development.

It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high-quality lightweight concrete additives, please feel free to contact us and send an inquiry. (

Properties and Application of Hafnium Carbide

Hafnium carbide (HfC), is a chemical compound with a distinct character. It has many uses.

1. Hafnium Carbide: Its Properties

Hafnium carburide is a grayish powder that belongs in the metal carbide category. It has high melting points, good hardness and high thermal stability.

Physical property

The hafnium-carbide crystal structure is cubic with a face-centered structure and a lattice coefficient of 0.488nm. It is a hard material with a melting temperature of 3410 degrees Celsius.

Chemical property

Hafnium carburide is chemically stable, and it is not soluble in water or acid-base solutions. It is not easily affected by high temperatures. This material is stable at high temperatures. Hafnium carburide has a high radiation resistance, and is therefore suitable for use in nuclear reactors and particle acceleraters.

2. Hafnium Carbide Application

Hafnium carbide is used widely in many industries due to its high melting points, high hardness as well as good thermal and chemical properties.

Electronic field

Hafnium carburide is widely used in electronic fields, and it's a key component of electronic glue. Electronic paste is used on printed circuit boards. Hafnium can be added to the paste to increase its adhesion. Hafnium can be used to improve the reliability of electronic devices by using it as a sealant.

Catalytic field

Hafnium carburide is a great catalyst for many chemical reactions. One of the most common uses is in auto exhaust treatment, which reduces harmful gas emissions. Hafnium carburide can be used to produce hydrogen, as a catalyst for denitrification and in other fields.

The optical field

Hafnium carbide is transparent, and it can be used for optical components and fibers. It can enhance the durability and transmission of optical components, and reduce light losses. In optical fields like lasers, optoelectronics and semiconductor devices, hafnium carbide can be used for key components.

Ceramic field

Hafnium carbide can be used to improve the density and hardness of ceramic materials. It can also improve the performance of high-performance materials such as structural and high temperature ceramics. Hafnium carbide can be used to grind and coat materials.


RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a market leader in the nanotechnology industry, dominates this sector. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. You can send an email if you're looking for Hafnium carburide to

Application Fields of Gallium Nitride

The wide-gap semiconductor material GaN is widely used due to its excellent electrical, optical and physical properties.

1.Semiconductor light

Gallium Nitride is widely used in semiconductor lighting. The high reflectivity, transparency and luminescence of gallium nitride material make it ideal for high-performance, LED lamps. LED lamps offer a higher level of luminous efficiency than fluorescent and incandescent bulbs, as well as a longer life span. This makes them suited for use in many fields, including indoor and exterior lighting, displays, automobile lighting, etc.

Gallium Nitride is the most common material used for substrates of LED chips in semiconductor lighting. LED chips, the main components of LED lighting, are directly responsible for the overall performance. They determine the LED light's luminous efficacy and service life. Gallium Nitride is an excellent substrate material because it has high thermal conductivity. It also has high chemical stability and stability. It improves the LED chip's luminous stability and efficiency, as well as reducing manufacturing costs.

2.High-temperature electronic devices

Gallium Nitride is also widely used for high-temperature electronics devices. Gallium nitride, which has high electron saturation rates and high breakdown electric fields, can be used for electronic devices that work in high-temperature environments.

Aerospace is a harsh field and it's important to have electronic devices that work reliably in high temperature environments. As a semiconductor high-temperature material, gallium-nitride materials are primarily used to make electronic devices like transistors and field effect transistors for flight control systems and fire control. In the area of power distribution and transmission, high-temperature devices like power electronic converters and switches can also be manufactured using gallium nitride. This improves the efficiency and reliability of equipment.

3.Solar cells

Gallium nitride solar cells also receive a lot attention. High-efficiency solar panels can be produced due to its high transparence and electron saturation rate.

Silicon is the main material in most traditional solar cells. Silicon solar cells are inexpensive to manufacture, but have a narrow bandgap (around 1.1eV), which limits their efficiency. Gallium-nitride solar cell have a greater energy gap width (about 2.30eV), allowing them to absorb more sunlight, and thus have a higher photoelectric efficiency. The manufacturing cost of gallium-nitride cells is low. They can achieve the same conversion efficiency for a lower price.


Gallium Nitride is also widely used as a detector. They can be used to manufacture high-efficiency detectors like spectral and chemicals sensors.

Gallium Nitride can also be used as a material to make X-ray detectors that are efficient and can be applied in airports or important buildings for security checks. Gallium nitride is also used for environmental monitoring to produce detectors like gas and photochemical sensor, which detect environmental parameters, such air quality, pollutants, and other environmental parameters.

5. Other applications areas

Gallium nitride can be used for many different applications. Gallium nitride is used, for instance, to make microwave and high frequency devices such as high electronic mobility transistors and microwave monolithic Integrated Circuits (MMICs), that are used in fields like radar, communications, and electronic countermeasures. Additionally, gallium nitride It can also be used for the manufacture of high-power lasers and deep ultraviolet optoelectronics.

Applications of Nickel-based Alloy Rod

Nickel alloy rod contains many other elements including iron, chrome, and molybdenum. Nickel-based alloys have higher strength and corrosion resistance as well as high temperature stability compared to iron-based metals. This makes them popular in many industrial and engineering applications.

Petrochemical Industry

Nickel-based rods are used widely in the petrochemical industries. In petroleum cracking, nickel-based rods are used for reactor manufacturing. They can withstand high pressure and temperature conditions and offer good corrosion resistance. Nickel-based rods can also be used for manufacturing equipment like pipelines and containers during petrochemical processes.

In the petrochemical industries, nickel-based rods are used primarily to manufacture high temperature and high pressure reactors, heat-exchangers, towers. It is essential to select materials that have high strength, corrosion resistance and high temperature stability due to the fact that they will be used in environments with high pressures, temperatures and corrosive mediums. Nickel-based rods are a material that has excellent properties, and is used to manufacture petrochemical machinery.

Nuclear Industry

The nuclear industry can use nickel-based alloys rods as a manufacturing material for nuclear reactors. These rods are corrosion-resistant and exhibit excellent high-temperature resistance. The nickel-based rods, with their excellent high-temperature stability and corrosion resistance, can be used as structural materials or shells for nuclear fuel component components.

In nuclear reactors nickel-based alloys rods are used primarily to manufacture fuel components. These components have to be able work in environments with high temperature, high pressure, and radioactivity. These components must be highly resistant to corrosion and high temperature. Nickel-based rods are a material that has these properties, and is therefore a preferred choice for the manufacture of nuclear fuel elements.

Aerospace field

Nickel-based alloys rods are used primarily in aerospace to make key components such as aviation engines and rocket motors. Nickel-based materials are used in aerospace because of their high-temperature resistance and excellent stability.

Nickel-based alloys rods are used primarily in aviation engines to make turbine discs and blades. They also serve as guide vanes. These components have to be able to withstand high temperatures, pressures and speeds. These components must have excellent high temperature strength, creep strength, corrosion resistance. Nickel-based alloys rods possess these properties, and are therefore one of aviation engine manufacture's preferred materials.

Automotive manufacturing sector

Nickel-based alloys rods can be used in the manufacture of high-performance automobile components. Nickel-based rods are used in the manufacture of high-performance automotive components, such as engine cylinder blocks or cylinder heads.

Nickel-based rods are used in the automotive industry to make key engine components, such as cylinders, cylinder heads and pistons. Materials with high strength and corrosion resistance are needed for these components, which will be working in high-temperature and high-pressure environments. These alloys are made of nickel and have become a popular material for engine manufacture.

Medical device field

Medical devices can benefit from the biocompatibility of nickel-based alloys and their corrosion resistance. This ensures safety and reliability.

Medical devices is a broad field that includes a variety of medical devices including surgical instruments, implant, diagnostic equipment, rehabilitation materials, etc. Nickel-based rods are a major raw material for high-precision, high-quality medical equipment. In surgical instruments, for example, surgical knives and forceps that are made from nickel-based metal rods provide excellent durability and cutting performance. Orthopedic and cardiovascular implants made with nickel-based rods are biocompatible and have excellent mechanical properties. They can treat a variety of orthopedic and cardiovascular diseases.

Other fields

Nickel-based alloys rods can be used for a variety of applications, including construction, power and electronics. Nickel-based rods are used in power transmission and structural support for high-rise building. They can also provide outstanding strength and durability. Nickel-based rods can be used to make key components in the electronics sector, such as circuit boards and materials for electromagnetic shielding.


KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email to for Inconel powder.

What is Lithium stearate powder

Lithium stearate is a crystalline form of lithium.

Lithium stearate has the chemical formula LiSt. It is a white powder that is solid at room temperatures. It is highly lipophilic, and at low concentrations can produce high light transmission. This compound is slightly water soluble at normal room temperature, and readily soluble with organic solvents including acetone and alcohol. Lithium Stearate is stable and thermally safe at high temperatures because it has a melting point and flashpoint. The lithium stearate also has good chemical resistance and is resistant to acids and bases, as well as oxidants, reductants and reducing agents. Lithium is less toxic than other metals, but should still be handled with care. An excessive intake of lithium can lead to diarrhoea or vomiting as well as difficulty breathing. Wearing gloves and goggles during operation is recommended because prolonged exposure to lithium can cause eye and skin irritation.

Lithium stearate:

Surfactant: Lithium Stearate Surfactant, lubricant, and other ingredients are used to make personal care products, such as shampoos, soaps, body washes, and cosmetics. It has excellent foam properties and good hydrolysis stabilty, resulting in a gentle and clean washing experience.

Lithium stearate has an important role to play in polymer syntheses. It can be used both as a donor and a participant in the formation of polymer chains. These polymers have good mechanical and chemical properties, making them ideal for plastics, rubber fibers, etc.

Lithium stearate can be used in cosmetic formulations to soften and moisturize the skin. It enhances moisturization, and makes the skin feel softer and smoother. The antibacterial and antiinflammatory properties of lithium stearate can also help with skin problems.

Paints & Coatings: Lithium is used to thicken and level paints & coatings. It helps control the flow, as well as the final properties. It is resistant to weather and scratches, which makes the coating durable.

Applications of lithium stearate include drug carriers, excipients, and stabilizers. It can enhance the taste and solubility and stability of medications.

Lithium stearate has many uses in agriculture, including as a carrier for fertilizer and a plant-protection agent. It increases the efficiency of fertilizers and improves plant disease resistance.

Lithium stearate may be used in the petrochemical sector as a lubricant or release agent. As a catalyst in the cracking of petroleum, lithium stearate improves cracking yield and efficiency.

Lithium stearate production method :

Chemical Synthesis:

Lithium stearate can be synthesized through a series a chemical reactions. In order to get the lithium metal reacting with the stearate, they are heated together in an organic solvant. After washing and separation steps, the pure lithium-stearate product is obtained.

Following are the steps for synthesis.

(1) Lithium metal and stearate in organic solvents, such as ethanol heated stirring to fully react.

(2) The reaction solution must be cooled in order to precipitate lithium stearate.

(3) Wash the crystal with water and remove any lithium stearate particles.

(4) The dried crystals will be used to make lithium stearate.

Chemical synthesis is a mature technology that offers high efficiency in production and product purity. However, organic solvents have a negative impact on the environment. A certain amount of waste is generated during production.

Methode de fermentation biologique

In biological fermentation, microorganisms such as yeast are used in the medium to produce lithium. The principle behind this method is that microorganisms use their metabolic pathways to produce stearic and react with metal ions, such as lithium, to create lithium stearate.

These are the steps that you will need to take in order to produce your product.

(1) The microorganisms will be inoculated onto the medium containing precursors for fermentation culture.

(2) The filtrate is used to produce a solution of stearic acetic acid.

(3) Add metals (such as the lithium ions) into the solution with stearic to ensure that they fully react.

(4) The reaction product is separated and washed, then dried to give lithium stearate.

The benefits of biological fermentation include environmental protection, less waste discharge and a longer production process. However, the conditions for production are also higher.

Prospect Market of Lithium Stearate:

The application of lithium in personal care will continue to play a major role. It plays an important part in soaps as well as shampoos, cosmetics, and body washes. As people's standards of living improve and the cosmetics sector continues to expand, lithium stearate demand will gradually rise.

Second, the use of lithium stearate for polymer synthesis has also increased. It can be used both as a donor and a participant in polymer chain formation. As polymer materials science continues to develop, the demand of lithium stearate increases.

Lithium stearate's application in agricultural, petrochemical, pharmaceutical and other fields is also growing. In the pharmaceutical sector, lithium stearate may be used as a carrier, excipient or drug stabilizer. In the agricultural field, lithium stearate is used to transport fertilizer and as a plant protector. In the field of petrochemicals, lithium isostearate may be used as an lubricant or release agent. In these fields, the demand for lithium will increase as technology advances.

But the outlook of the lithium stearate market is not without its own challenges. In order to produce lithium metal, it is necessary to use a more expensive production process. Aside from that, the applications of lithium is limited, with a concentration in agriculture, petrochemicals, pharmaceutics, personal care, polymer syntheses, and pharmaceuticals. To expand the scope of application and market demand for lithium stearate, it is important to continually develop new applications and markets.

Lithium stearate powder price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you're looking for the most recent lithium stearate price.

Lithium stearate powder Supplier:

Technology Co. Ltd. has been supplying high-quality chemical materials for over 12 years.

The chemical and nanomaterials include silicon powders, nitride particles, graphite particles, zinc sulfide. boron powders, 3D printing materials, etc.

Contact us today to receive a quote for our high-quality Lithium Stearate Powder.

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium sulfide is a semiconductor material with the chemical formula GeS2. It has a certain solubility in water, easily soluble in hot alkali, and soluble in concentrated hydrochloric acid. Particle size: -100mesh
Purity: 99.99%

About Germanium Sulfide GeS2 Powder:
Germanium Sulfide is also called Germanium Sulphide, Germanium disulfide. Germanium disulfide formula is GeS2. Unstable, high temperature is easy to sublimation and oxidation, dissociate in humid air or inert atmosphere, insoluble in water and inorganic acid (including strong acid), is soluble in thermal alkali, dissolved in ammonia or sulfide diaphragm.
Germanium disulfide density is 2.19 g / cm3. Melting point 800 deg C. Germanium Sulfide is a small white powder, mainly consisting of Germanium disulfide (GeS2) particles. Like many closely related metal sulfides, Germanium disulfide powder is currently the subject of many researchers, researching its potential in energy storage applications, such as solid-state batteries.
The crystal of germanium disulfide is orthogonal. Single cells contain 24 molecules whose dimensions are: A = 11.66a, B = 22.34A, C = 6.86A. Accuracy 1/2%. The space group is FDD (C2V19). Eight germanium atoms are located on a double-axis; all other atoms occupy a general location. The 12 parameters involved have been determined. Each germanium atom is connected to four sulfur atomic tetrahedrons, with an atomic distance of 2.19A. The angle between the two sulfur bonds is 103 deg.

Feel free to send an inquiry to get the latest Germanium disulfide price if you would like to buy Germanium Sulfide GeS2 Powder in bulk.

High purity germanium sulfide granule GeS2 powder:

Nature: white powder. Orthogonal crystal structure. Density 2.19 g / cm3. Melting point 800 . Unstable, high-temperature sublimation and oxidation, in the humid air or inert atmosphere dissociation. The molten state is a fresh brown transparent body, a density of 3.01g / cm3, insoluble in water and inorganic acids (including strong acid), soluble in hot alkali, dissolved in ammonia or sulfide diamines to generate imide germanium. By the germanium powder and sulfur vapor or hydrogen sulfide and sulfur mixed gas from the system. For the germanium metallurgy intermediate products.

germanium sulfide CAS number 12025-34-2
germanium sulfide Molecular formula GeS2
germanium sulfide Molar mass 136.77 g mol-1
germanium sulfide Appearance White, translucent crystals
germanium sulfide Density 2.94 g cm-3
germanium sulfide Melting point 840 degC (1,540 degF; 1,110 K)
germanium sulfide Boiling point 1,530 degC (2,790 degF; 1,800 K)
germanium sulfide Solubility in water 0.45 g/100 mL
germanium sulfide Solubility soluble in liquid ammonia

How is Germanium Sulfide GeS2 Powder produced?
Germanium disulfide can be generated from hydrogen sulfide to tetrachloride in a concentrated hydrochloric acid solution.
Germanium disulfide was prepared from germanium and sulfide vapor or hydrogen sulfide, and a mixed gas of sulfur.

Applications of Germanium Sulfide GeS2 Powder:
Solid-State Battery: Like many closely related compounds, Germanium disulfide is particularly interested in researchers and manufacturers designed in front of them.
In particular, this material has potential value in the cathode production of certain types of batteries.
The vulcanized nanoparticles are great potential as a high-performance lithium-sulfur battery.
Electrology: For researchers engaged in energy storage technology, Germanium disulfide has the same characteristics, which makes it a certain potential value when producing other components and materials for advanced electronic technology.
Catalyst: Like many sulfides, germanium disulfide has the unique potential to produce more complex compounds for high-tech equipment and other chemical reactions.
Optical properties: Like many related materials, nano-level sulfur provides a large number of unique optical properties, many of which have not been fully understood.
This makes the research interest in this material involve a wide range of industries and fields, from electron-to-photovoltaic to imaging techniques.

Storage Condition of Germanium Sulfide GeS2 Powder:
Damp reunion will affect GeS2 powder dispersion performance and using effects, therefore, Germanium Sulfide GeS2 Powder should be sealed in vacuum packing and stored in cool and dry room, the Germanium Sulfide GeS2 Powder can not be exposure to air. In addition, the GeS2 powder should be avoided under stress.

Packing & Shipping of Germanium Sulfide GeS2 Powder:
We have many different kinds of packing which depend on the Germanium Sulfide GeS2 Powder quantity.
Germanium Sulfide GeS2 Powder packing:vacuum packing, 100g, 500g or 1kg/bag, 25kg/barrel, or as your request.
Germanium Sulfide GeS2 Powder shipping: could be shipped out by sea, by air, by express, as soon as possible once payment receipt.

Technology Co. Ltd. () is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.
If you are looking for high-quality Germanium disulfide powder , please feel free to contact us and send an inquiry. ( )

Germanium Sulfide Properties

Other Names germanium(IV) sulfide, germanium disulfide,
germanium disulphide, GeS2 powder
CAS No. 12025-34-2
Compound Formula GeS2
Molecular Weight 136.77
Appearance White Powder
Melting Point 800
Boiling Point 1530
Density 2.94 g/cm3
Solubility in H2O 0.45 g/100 mL
Exact Mass 137.86532

Germanium Sulfide Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder boride is a combination of molybdenum with boron. The molybdenum is boride has the chemical formula MoB2, and a molecular weight of 202.69. Purity: >99%
Particle size: 5- 10um

Molybdenum Boride MoB2 Pulp :
Molybdenum-boride consists of molybdenum (or boron) and a compound. The most important feature of this material is its high hardness. It has a very high strength. It is also very hard, it is good at high temperatures and electrically conductive, as well as having excellent oxidation resistant. Molybdenum-boride was used for structural high temperature applications, and as Mob/CoCr coatings. It's also used for brazing, particularly in electronic components. Molybdenum boreide can be used in industrial applications because of its wear-resistance, corrosion resistance, and other properties.

If you're interested in buying Molybdenum Boride powder at a bulk price, please send us an email to find out the current Molybdenum Boride price.

Molybdenum-boride powder MoB2 Features
CAS No. : 12006-99-4
EINECS No. : 234-502-8
MDL No. : MFCD00014219
Appearance : yellow grey crystal
Molecular Formula : MoB2
Weight in Molecular Mass: 202.69
Density: 9.26 g/ cm3
Melting point: 2280 oC
Particle size: 5- 10um

Application Molybdenum Boride MoB2 Molybdenum Boride MoB2 Molybdenum Boride MoB2 Molybdenum Boride MoB2,
Molybdenum Boride Mo2B used for brazing or welding special metals as well non-corrosive connectors and switches.
Molybdenum-boride (Mo2B), which is used in the production of wear-resistant, mechanically corrosion-free parts and high-speed tools.
Molybdenum-boride (Mo2B), a compound derived from molybdenum and tungsten, is mostly used as a component of alloys containing both.
Molybdenum-boride (Mo2B), a wear-resistant semiconductor, can be used for thin films or coatings.

Storage Conditions of Molybdenum Boride powder MoB2
Molybdenum-boride MoB2 should be kept in a dry and cool room. The powder must not be exposed. MoB2 powder must also not be exposed to stress.

Packaging & shipping of molybdenum boride Powder MoB2
The packaging is dependent on the amount of molybdenum Boride MoB2 Powder.
Packaging of molybdenum-boride powder MoB2: Vacuum packaging, 100g/bag, 500g/bag, 1kg/bag. 25kg/barrel. Or as per your request.
Molybdenum-boride MoB2 powder shipment: Could be shipped by sea, air, or by express as soon after payment receipt.

Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality nanomaterials. These include boride powders, graphite or nitride particles, as well as sulfide particles, 3D-printing powders, etc.
We are happy to answer any questions you may have. (

Molybdenum Boride MoB2 Pulp Properties

Alternative Names Molybdenum monoboride, Borylidynemolybdenum, CAS 12007-27-1
(molybdenum diboride, MoB2)
CAS Number 12006-99-4
Compound Formula MoB2
Molecular Mass 106.75
Appearance Gray to Blue Powder/Pieces
Melting Point N/A
Solubility N/A
Density 9.20 g/cm3
Purity >99%
Particle Size 5-10um
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young's Module N/A
Exact Measure 108.914714
Monoisotopic Mash 108.914711

Molybdenum Boride MoB2 Pulp Health & Safety Information

Safety Advisory Warning
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3
Brush, mirrors, hairline, mirror, polish, sandblast, mill.


Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate properties

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size You can customize the look of your website by using
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Weight N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries.

About High Density Tungsten Aloy Rod Grinding Surface:
The majority of the Tungsten Alloy Rod is composed of nickel, iron, or copper.

Low thermal expansion and high density, with high thermal conductivity and electrical conductivity. Perfect performance in environments of high radiation exposure.

The aerospace, military and medical industries use this material extensively.

Payment & Transport:

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Properties

Alternative Names Tungsten Alloy Bar
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 17g/cm3
Purity N/A
Size You can customize the look of your website by using
Bolding Point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young’s Module N/A
Exact Mass N/A
Monoisotopic Mash N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity 3D Printing Alloy CoCrW Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

Newswhatsontianjin is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.

And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newswhatsontianjin.